Slc mlc tlc qlc

Содержание

Выбираем SSD: обзор вариантов на рынке и советы экспертов

Slc mlc tlc qlc

Конечно, SSD различаются не только типом подключения и форм-фактором. Внутри тоже имеются существенные отличия. Мы начнем с технологий флэш-памяти.

SLC, MLC, TLC и QLC – что это такое?

Если посмотреть спецификации нескольких SSD, то они будут опираться на те или иные технологии флэш-памяти. Чаще всего упоминаются SLC, MLC, TLC, QLC и 3D-NAND.

Первые четыре аббревиатуры указывают, сколько битов записываются в ячейку памяти. В случае Single Level Cell (SLC) речь идет об одном бите, у ячеек Multi Level Cells (MLC) мы получаем два бита, Triple Level Cells (TLC) – три бита.

Наконец, Quadruple Level Cells (QLC) – четыре бита на ячейку.

Как можно догадаться по названию, разные типы памяти позволяют записывать разное число бит в ячейку. Поэтому для хранения одного и того же объема данных требуется больше ячеек SLC, чем TLC или QLC. Что приводит к соответствующему увеличению цены.

Однако и недостатки памяти с высоким числом битом на ячейку очевидны. Следует помнить, что для фиксации значения ячейки используются электроны (заряд). В случае SLC все просто – заряд либо есть, либо нет, что дает 21 состояний. С ячейками MLC мы получаем уже градации заряда, 22 состояний.

Соответственно, с ячейками TLC и QLC число состояний увеличивается до 23 и 24. В последнем случае речь идет о 16 состояниях, причем контроллер должен правильно их различать. Поэтому и производительность снижается по сравнению с SLC.

Кроме того, ячейки памяти не вечные, чем они будут интенсивнее использоваться, тем меньше будет срок службы.

Но производители продолжают оптимизировать контроллеры и чипы памяти, поэтому и расчетный срок службы накопителей увеличивается.

Например, в случае WD Black SN750 (тест) емкостью 2 Тбайт WD указывает расчетную нагрузку записи TBW 1.200 Тбайт, что в 600 раз превышает емкость.

На практике обычный пользователь ПК вряд ли достигнет подобного уровня, но производители SSD продолжают повышать уровень TBW.

3D-память

Производители флэш-памяти уже несколько лет развивают концепцию 3D NAND, которая позволяет увеличить надежность и производительность. В отличие от планарной флэш-памяти 2D, ячейки памяти формируют трехмерную структуру.

В случае 3D NAND слои памяти накладываются друг на друга как в “бутерброде”. В результате 64 слоя памяти WD Black SN750 позволяют уместить в 64 раза больше данных, чем в случае планарной 2D NAND.

Что такое SLC-кэш?

Еще один способ повышения производительности – использование SLC-кэша.

High-end SSD, подобные WD Black SN750, оснащаются кэшем DDR4 емкостью 1 Гбайт, который позволяет максимально задействовать пропускную способность интерфейса NVMe.

Данные в кэш можно записывать с очень высокой скоростью, намного превышающей возможности флэш-памяти. Но по сравнению с общей емкостью SSD кэш-память имеет сравнительно небольшой объем.

Чтобы пропускная способность не снижалась слишком резко после исчерпания данного объема, SSD обеспечивает еще 12 Гбайт (в случае емкости 1 Тбайт) так называемого SLC-кэша. Емкость SLC-кэша зависит от емкости накопителя.

В данном режиме накопитель записывать данные в режиме SLC с высокой скоростью, то есть каждая ячейка программируется только одним битом. После заполнения доступной емкости SLC-кэша запись производится уже в стандартном режиме TLC/QLC, что снижает производительность.

Кроме того, если емкость SSD почти полностью заполнена, то и места для SLC-кэша не остается. Впрочем, в большинстве случаев бывает достаточно кэша DDR4, а также SLC-кэша.

Срок службы SSD: насколько важны TBW и MTBF?

Технология флэш-памяти сказывается на сроке службы SSD. И здесь довольно часто используется термин “TBW”.

За ним скрывается общий объем записанных байт (Total bytes to be written). Если верить спецификациям, у WD Black SN750 емкостью 1 Тбайт мы получаем значение TBW 600 Тбайт. Таким образом производитель гарантирует запись 600 Тбайт информации на накопитель на протяжении его жизненного цикла.

Важно отметить, что речь идет о минимальном значении. То есть SSD не выйдет из строя после записи 600 Тбайт, на практике он выдержит намного большую нагрузку. В нашем форуме читатели приводят различные сведения, которые доказывают надежность SSD выше заявленного производителем результата.

Можно привести простой пример: если вы переносите на SSD каждый день 20 Гбайт информации, то модель WD Black SN750 гарантированно хватит на 80 лет. Если же объем записываемой информации увеличить до 400 Гбайт, то срок службы составит 5 лет.

Так что даже для энтузиастов значение TBW не составит проблем. Конечно, все несколько иначе выглядит в серверных сценариях, поскольку здесь профили использования могут отличаться.

Но и для подобных сценариев есть оптимизированные решения на основе SSD.

Кроме TBW производители часто указывают надежность SSD в MTBF. Здесь речь идет о часах, которые накопитель может проработать до вероятного выхода из строя (по результатам тестов производителя).

Интерфейсы: SATA или NVMe?
Какой SSD выбрать?

Источник: https://www.hardwareluxx.ru/index.php/artikel/hardware/storage/48532-vybiraem-ssd-obzor-variantov-na-rynke-i-sovety-ekspertov.html?start=2

Что выбрать MLC, TLC или QLC? (а также о V-NAND, 3D NAND и SLC)

Slc mlc tlc qlc

Выбирать комплектующие для компьютеров всегда сложно. Если раньше, когда технологии только развивались, трудность заключалась в недостаточном количестве информации, то сейчас в ее обилии трудно уследить за всеми новинками. В этой статье мы поговорим о SSD накопителях и технологиях, которые в них используются.

Что такое твердотельный накопитель?

Накопители, использующие энергонезависимую память, относительно новое изобретение, которое появилось только во второй половине 90-х годов.

В отличие от жестких дисков, которые хранили информацию на магнитных пластинах, и считывали ее с помощью считывающей головки, на SSD информация хранится в массиве ячеек памяти, состоящем из транзисторов с плавающим затвором, здесь используется такая же технология, как и во flash накопителях.

Благодаря отсутствию движущихся частей, скорость работы SSD накопителей выше, а работают они тише, меньший вес, потребление энергии примерно на 80% ниже, отсутствие нужды в дефрагментации. Все это хорошо, но к огромному минусу можно отнести невозможность восстановления удаленной информации.

Флеш-память для SSD определяется плотностью записываемых данных и количеством уровней сигнала, поддерживаемых одной ячейкой. Она представляет ячейки памяти на основе полупроводников, организованные специальным образом. Все потребительские SSD, находящиеся в продаже имеют тип памяти NAND. По типу хранения они разделяются на четыре группы:

  • Первый тип флеш-памяти, который был применен в твердотельных накопителях, SLC (Single Level Cell – одноуровневая ячейка). Он поддерживает всего лишь один уровень сигнала, поэтому может записывать только 1 бит информации, который является 0 или 1, в зависимости от положения транзистора.
  • MLC (Multi Level Cell – многоуровневая ячейка) – улучшенная версия SLC. В этой версии может записываться несколько уровней сигнала, из-за чего количество информации, который можно записать в одну ячейку равняется 2 битам. Это увеличивает плотность записи и снижает цену на гигабайт емкости в 2 раза.
  • TLC (Triple Level Cell – трехуровневая ячейка) – улучшенная версия MLC. За счет тонкого управления уровнем заряда ячейки, и повышением чувствительности считывания, в одном элементе флеш-памяти может храниться 3 бита информации.
  • QLC (Quad Level Cell – четырехуровневая ячейка) – На 2019 год является самым новым видом памяти. Одна ячейка способна хранить 4 бита данных одновременно. Цена на эту флеш-память ниже чем у предыдущих.

Повышая емкость ячейки флеш-памяти, компании снижают стоимость SSD накопителей, но это также снижает ресурс диска, влияя на количество циклов перезаписи.

Чем больше емкость, тем меньше раз можно будет перезаписывать данные, и, в какой-то момент, циклы перезаписи закончатся, и можно будет только считывать хранящуюся информацию.

Кроме того, транзистор, который хранит данные, из-за перехода на многоуровневые типы флеш-памяти стал чувствительнее, а значит, он быстрее изнашивается. Какое количество перезаписей выдерживают разные типы ячеек?

  • для SLC количество перезаписей около 100 тысяч
  • для MLC – около 10 тысяч
  • для TLC – 3-5 тысяч
  • QLC переживают всего около 1 тысячи циклов

Еще одна проблема, связанная с повышением плотности – снижение скорости. Из-за того, что контроллеру нужно понимать разницу между комбинациями бит, нагрузка увеличивается. Как следствие, увеличивается время, затраченное на чтение и запись. То есть, чем больше состояний поддерживающихся флеш-памятью в SSD накопителе, тем медленней происходит запись.

Что выбрать MLC или TLC?

Мы не будем говорить о SLC дисках, так как они почти отсутствуют в потребительском сегменте, если же они там есть, то цены на них слишком высоки. Из всего вышесказанного, можно сказать, что MLC лучше для пользователей, чем TLC, так как

  • Работает с более высокой скоростью
  • Имеет более продолжительный срок службы
  • Использует меньшее количество энергии во время работы

Минус MLC – более высокая, по сравнению с TLC, цена.

Однако мы не можем сказать этого наверняка, так как можно купить более новый SSD с TLC памятью, который будет более емким, с более новым набором характеристик, которые окажутся лучше, чем у накопителя с MLC памятью.

Но можно точно сказать, что до 10000 рублей TLC покупать намного выгодней, чем MLC.

Кроме этого, нужно учитывать, что SSD накопители не предназначены для хранения большого количества информации, но они подходят для установки операционной системы и программ, которыми вы пользуетесь, так как увеличивают скорость загрузки.

V-NAND, 3D NAND, 3D TLC

При покупке или изучении SSD накопителей, вам могут встретиться эти обозначения, давайте разберемся, что они означают?

SLC, MLC, TLC и QLC это ячейки, расположенные в плоскости. Для увеличения памяти нужно большее количество кристаллов, но уменьшать их сложно, и неизвестно, оправдается ли уменьшение кристаллов с экономической точки зрения.

Поэтому разработчики решили делать твердотельные накопители, размещая ячейки не только в плоскости, но и слоями. Из-за этого чипы будут трехмерными, как следствие, появится возможность помещения большего количества информации на такую же единицу площади.

Такая флеш-память более долговечна, благодаря тому, что нет нужды в подаче высокого напряжения при записи данных в ячейку.

Первая компания, которая начала производство многослойной памяти – Samsung. В 2013 году они сообщили о первом выпуске трехмерных чипов MLC типа, под названием 3D V-NAND. В них содержалось 24 слоя. Через год число слоев увеличилось до 32, а тип памяти изменился на TLC. Технология, которую использовали Samsung сделала чипы памяти более экономичными, надежными и быстрыми.

Для создания многослойной памяти производители напыляют какое-то число слоев на кремниевую пластину, которые образовывают линии слов, и создают очень большое количество отверстий, для последующего формирования линий битов.

Какой максимум слоев может быть нанесен? Из расчетов высоты 32-слойной V-NAND (4мкм) к высоте пластины (625-775мкм), можно создать более 190 слоев памяти.

Это только теоретические расчеты, поэтому вряд ли такое значение будет достигнуто, но это показывает перспективы развития технологии 3D NAND.

Технологии продолжают развиваться. Год от года технология создания твердотельных накопителей улучшается. Их цена падает, а скорость и время работы растет. Хотя SSD все еще не заменили жесткие диски, можно сказать, что это технологии, которые будут развиваться и дальше еще долгое время.

Источник: https://lenovo-smart.ru/chto-vybrat-mlc-tlc-ili-qlc-a-takzhe-o-v-nand-3d-nand-i-slc.html

Ячейки памяти в SSD. Как работают, почему ломаются? SLC, MLC, TLC, QLC

Slc mlc tlc qlc

Для данной статьи существует видоеверсия с большим количеством анимаций, рекомендую к просмотру именно её, вместо текстовой версии:

Принципы работы ячеек памяти, определение носителя информации, принципы считывания состояния ячейки памяти

Каждая ячейка памяти — это полевой транзистор с изолированным затвором, но не простой, а хитрый. Со сдвоенным затвором. Если кто не в курсе общая суть полевого транзистора заключается в следующем:

У нас есть исток и сток, проще говоря вход и выход, и между ними область через которую может проходить заряд от стока к истоку, и есть ещё одна отделённая область от этих структур диэлектриком, которая называется — затвор. И если подать заряд на затвор, то затвор своим электромагнитным полем начинает влиять на легированную часть транзистора между стоком и истоком и этим перекрывает возможность протекания тока между ними.

Бывают конструкции наоборот, что если не подавать заряд на затвор, то ток от стока к истоку не идёт, а если подавать — то идёт. Но общая суть — это то, что затвор — это типа ручки у крана. Когда хочешь открываешь, когда хочешь закрываешь.

Ну либо замок у ворот, собственно термин «затвор» как бы и намекает, что мы им можем затворять или отворять ток между стоком и истоком.

Наиболее классический вариант для ячеек памяти — это когда без подачи питания на затвор — между стоком и истоком ток не идёт, а при питании плюсом на затвор — ток — идёт. Очень удобно в части управления, но как этим сохранять информацию — не понятно.

И для того чтобы сохранять информацию была придумана модификация с двумя затворами. Первый, грубо говоря, внешний. Простой обыкновенный, а второй — внутренний, хитрый, называемый «плавающим». А хитрость его в том, что он со всех сторон окружён изолятором.

То есть если поместить в него какой-то заряд, то этот заряд сам никуда не денется. И тут начинается самое интересное. Предположим, что заряда на плавающем затворе — нет. В таком случае — транзистор работает ровно так же, как и в случае когда второго затвора не было вообще.

То есть не подаём заряд на затвор ток не идёт — подаём — ток идёт. Но если в плавающий затвор подать отрицательный заряд, то логика работы меняется.

Если не подавать заряд на обычный затвор, то ток идти не будет, но если падать положительный заряд, то этот заряд будет компенсирован отрицательным зарядом плавающего затвора и в сумме они не дадут необходимого заряда чтобы ток через транзистор пошёл. То есть в случае активации транзистора ток через него всё равно не идёт.

Иными словами — в случае подачи положительного заряда, если на плавающем ничего нет, то транзистор будет открыт, а если заряд есть — то транзистор будет закрыт. А теперь вспоминаем, что заряд в плавающем затворе никуда не девается, в том числе и в моменты когда питание на весь накопитель не подаётся вообще.

То есть в любой момент времени мы можем по поведению тока сток исток понять есть ли заряд в нашем хитром затворе или нет. То есть прочитать заранее сохранённое состояние нашего транзистора, который стал уже вовсе и не транзистором, а ячейкой памяти.

Запись данных в ячейку памяти и причины ограниченности ресурса работы SSD

С запоминанием информации в целом понятно. С тем как понять что записано надеюсь тоже понятно. Остаётся понять только то, как осуществляется зарядка и разрядка плавающего изолированного затвора.

То есть изменение состояния самой ячейки памяти. Иными словами — запись и стирание данных. И тут всё в общем-то не так сложно.

Общая суть в том, что если приложить достаточное напряжение — то электроны могут пройти через диэлектрик, в нашем случае диоксид кремния.

При подаче высокого напряжения на Затвор и Сток электроны вынужденно проходят в область плавающего затвора

И имея вокруг нашего хитрого затвора достаточную разность потенциалов можно в него насильно впихнуть электроны, или наоборот высосать из него электроны, тем самым придав ему некий заряд, который сам по себе, без этих повышенных напряжений, никуда уже не денется долгие годы. Собственно таким образом и производится запись в ячейки памяти.

Подача отрицательного заряда на затвор «выталкивает» электроны из плавающего затвора и они притягиваются на исток

Проблема только в том, что эти насильственные действия над транзистором на повышенном напряжении разрушают диоксид кремния вокруг затвора раз за разом при каждом прохождении через него заряда.

Что ведёт к деградации свойств, и в конечном итоге к выходу ячейки памяти из строя. То есть при многократном воздействии на изолированный плавающий затвор для изменения его заряда — разрушается транзистор. То есть для транзистора существует предельное количество циклов изменения состояния этого затвора перед тем как ячейка памяти перестанет работать должным образом.

Естественно разработчики накопителей в курсе проблемы, это всё учитывается в создаваемых контроллеров памяти, которые стремятся равномерно производить износ всего накопителя, вводятся резервные области для замены вышедших из строя ячеек, есть и другие софтовые оптимизации уже и на уровне операционных систем позволяющие максимально редко производить ненужные перезаписи.

Многобитные ячейки памяти. MLC, TLC, QLC. Принципы работы и отличия от однобитных. Причины падения скорости от увеличения битности

С точки зрения работы транзистора наш дополнительный затвор позволяет сдвигать сток затворную характеристику. И кардинальное наличие заряда в плавающем затворе сдвигает эту характеристику так далеко, что рабочие напряжения для транзистора его не открывают.

Отрицательные заряды сильно смещают напряжение Затвор-исток при котором начинает идти ток сток-исток

И в показанной схеме у нас есть некий широкий диапазон напряжений на затворе который нам позволяет понять что записано условно 0 или 1. То есть мы сохраняем 1 бит информации.

И описанный метод записи и чтения — полностью цифровой. То есть транзистор либо проводит ток, либо — нет, и это мы можем интерпретировать условно в то, что записан условно 0 или 1.

И так работает SLC память, SLC расшифровывается как «Single-Level Cells», то есть одноуровневая ячейка. Величины зарядов, напряжения и прочее параметры плавающего затвора — не имеют особого значения значения, как-то произведена перезарядка затвора, как-то проводит транзистор и в целом это всё надёжно и просто работает.

Однако при разных градациях зарядов на плавающем затворе — напряжения на которых начинает открываться транзистор разные. И если фиксировать не только факт проводимости транзистора, а характеристику проводимости — то можно более точно и контролируемо заряжая плавающий затвор получить больше информации при записи в одну ячейку.

Набор стоко-затворных характеристик для разного уровня заряда плавающего затвора И это уже не цифровая запись, а аналоговая, то есть если мы зарядили чуть-чуть плавающий затвор, то и сместили мы характеристику чуть-чуть и у нас транзистор открывается если подать на затвор напряжение чуть выше чем минимально нужное, если зарядить плавающий затвор чуть сильнее, то и открыть транзистор будет ещё сложнее и т.д.

В теории можно допустить бесконечное количество градаций уровней записей. Сейчас наверное некоторые из вас в шоке, но ячейки памяти в  MLC, TLC и QLC SSD накопителях — это аналоговые носители информации, а не цифровые. Потому что именно таким образом и производиться запись многобитных ячеек памяти.

Ячейка всё равно может сохранить только одно состояние записи, но если для однобитных ячеек записью было наличие или отсутствие заряда на плавающем затворе, то в многобитных ячейках под записью понимается не факт наличия или отсутствия заряда — а величина заряда.

И уже эта величина при чтении должна быть оцифрована таким образом, чтобы это можно было записать в более чем один бит информации. И при оцифровывании любого аналогового сигнала емкость его данных в цифровом виде зависит от получаемой дискретности уровней распознавания сигнала.

То есть чем больше градаций сигнала можно распознать, тем выше ёмкость данных аналогового сигнала. В текущий момент дискретизация сигнала производиться не очень сильная. Для двух битов данных нужно распознать 4 уровня величины сохранённого заряда,

для трёх бит нужно распознать 8 уровней величины заряда,

и для 4-х бит нужно распознавать до 16 уровней заряда.

И распознование производиться по смещению характеристики открытия транзистора.

Грубо говоря, если у нас разбит весь диапазон тестирования открытия транзистора на 16 диапазонов, то надо по очереди тестировать каждое напряжение на затвор и зная при каком из них у нас в достаточной степени открылся транзистор — такой уровень и считать записанным в этом транзисторе.

И просто каждой градации этих напряжений даются порядковые номера которые и есть цифровая интерпретация уровня заряда плавающего затвора. И для 16 градаций или для QLC памяти — это 4 бита. Некоторые компании грозятся сейчас выпустить 5 битные ячейки.

Как вы понимаете именно по технике разницы с 4-х битными не будет, но градаций будет уже не 16, а 32. То есть надо очень точно попадать в нужный диапазон заряда при наполнении плавающего затвора, и гораздо сложнее становится процесс считывания сигнала, вернее процесс оцифровки уровня заряда плавающего затвора. Естественно при этом снижается скорость работы с памятью.

Кроме того — напомню, что процесс наполнения затвора зарядом — это аварийный для транзистора режим работы, и этот аварийный режим надо ещё очень точно контролировать, чтобы действительно был помещён нужный заряд, а не чуть больше или чуть меньше, потому что если заряд не попал в строгие рамки, то при его интерпритации он может дать другие цифровые значения.

И, естественно, чем больше градаций — тем сложнее попасть в нужный диапазон.

И в многобитных ячейках — неверная запись не является чем-то очень редким, поэтому для записи всегда требуется контроль на ошибки, что отнимает время, снижая скорость работы, вдобавок в случае ошибочной записи требуется перезапись ячеек в странице в которой была произведена ошибочная запись, что, как вы понимаете, ещё и снижает ресурс.

Причины снижения ресурса работы накопителей, запись накопителей с уплотнением данных

Но не только этим снижается ресурс записи на многобитных ячейках. Как вы могли понять из теории — аппаратных различий для MLC, TLC или QLC памяти — нет. Меняется только процесс интерпретации записи, который задаётся программно.

Иными словами если контроллер накопителя это позволяет, то QLC можно записывать в более простых для записи TLC, MLC или SLC режимах. Что сейчас активно и делается, хотя не на всех накопителях, но если пару лет назад было редкость — перезапись накопителей с уплотнением, то сейчас редкость когда такого не происходит.

Работу уплотнения записи отлично было видно в тестах накопителей, когда при полной последовательной записи скорость падала в несколько градаций.

Пример «Ступенчатой» скорости записи, когда она падает градациями несколько раз

Разберёмся в том, что при этом происходило с накопителем.

Вначале накопитель занимал весь свой объём записывая всё в однобитном режиме. То есть абы какой заряд уже абы как смещает стоко-затворную характеристику, но этого достаточно чтобы записать один бит на ячейку. И в таком режиме весь объём ячеек быстро заканчивается. По данным о диске он ещё записан совсем чуть-чуть, но на самом деле он полностью забит данными.

И для дальнейшего записывания накопитель начинает уплотнять запись. Но происходит это исключительно перезаписыванием.

То есть надо во временное место скопировать данные страницы, далее затереть записанные данные, то есть вытащить из плавающих затворов заряды, дальше взять новый кусок информации, собрать его со старым куском информации и записать в те же ячейки, но уже не абы как, а, допустим, в MLC режиме, то есть с 4-мя градациями уровней заряда плавающих затворов.

Далее накопитель так же заполняется полностью уже в режиме MLC. Если надо продолжить запись, а в MLC режиме место опять закончилось, то процесс уплотнения, то есть перезаписи в более плотном формате производиться уже в TLC режиме. Далее ещё может быть произведена запись в QLC режиме. Подобный механизм работает и в случае если вам хватило места до уплотнения.

Как только вы перестаёте заполнять накопитель он автоматически начинает уплотнять запись, чтобы в случае необходимости он мог опять кратковременно вести запись в однобитном режиме используя свободный остаток. Хотя ещё раз напомню, что не все накопители так делают. В некоторых выделен фиксированный объём для быстрой записи и дальше накопитель заполняется уже с финальной плотностью.

Естественно такое огромное количество травмирующих ячейки перезаписей а также перезаписей из-за ошибок — крайне негативно сказывается на долговечности работы ячеек.

Кроме того при большей плотности записи для изменения одного и того же объёма данных записанных случайным образом потребуется перезаписать больше страниц накопителя.

Иными словами — ресурс накопителей от увеличения плотности резко падает и, в общем-то, причин на это аж несколько.

Надеюсь теперь полученные знания сделают для вас тесты накопителей увлекательнее.

Защита материнской платы от конденсатаКакое “железо” выйдет в 2021 году?Всё железо 2020 года. InfoCAST #039Различия между разными Samsung B-Die комплектами ОЗУ.О ситуации Hardware Unboxed с NvidiaРазгон ядер vs разгон памяти (что такое тайминги и субтайминги и как работает разгон памяти)Infocast #038 | Железо и консоли есть, но их нет. Apple показали новые процессорыРазгон на “постоянку” в современных процессорахПочему моё Пельтье и от Intel так сильно отличаются?Лучшие и худшие компьютерные и DIY покупки из КитаяvRAM Drive. Скорость работы. Устанавливаю игры в видеокартуВлияние шин PCI-e и внутренней шины видеокарты на производительность

Источник: https://pc-01.tech/ssd/

Как не потеряться в SLC, MLC, TLC или QLC при выборе SSD

Slc mlc tlc qlc

Чаще всего, выбор SSD дисков сводится исключительно к их размерам и стоимости. Чуть более продвинутые пользователи смотрят ещё на заявленные скоростные характеристики и раскрученность бренда – так продаётся большинство накопителей.

На мой взгляд, подобный подход, в корне не правильный, ведь существует масса других, более важных параметров, которые просто не берутся во внимание. Так, я уже рассказывал о характеристиках надежности SSD дисков: TBW и DWPD, а сегодня речь пойдёт о типах памяти, применяемых при производстве твердотельных накопителей.

Типы памяти в SSD-дисках SLC, MLC, TLC и QLC

Попробуйте, ради интереса, спросить у продавцов-консультантов что скрывается за странными словами SLC, MLC, TLC или QLC в обозначении типов памяти SSD дисков и стоит ли вообще на это обращать внимание при покупке диска? И если стоит, то какой тип лучше? А я вот видел ещё красивые надписи V-NAND и 3D NAND и там вроде тоже что-то говорилось о памяти…

Для начала разберёмся с самим термином «NAND». Так называется вообще вся флешах-память, применяемая не только в твердотельных накопителях, но и флешках. NAND — это сокращение от Not AND (логическое “Не-И”). Если не вдаваться в технические подробности, то можно представить эти элементы как маленькие блоки из которых строится флеш-память и в этом все накопители схожи.

А вот технологии хранения информации в памяти могут существенно различаться. Вполне логичным кажется, что каждая ячейка должна хранить один бит информации и это у нас флеш-память типа SLC (Single-level Cell).

Накопители, построенные на памяти SLC являются самыми живучими (число циклов перезаписи каждой ячейки может достигать 100 000 раз и выше), но выходят слишком дорогим удовольствием и для домашнего применения их приобретение не оправдано.

Технологии MLC (eMLC), TLC или QLC хранят более одного бита в каждой ячейке памяти, что не лучшим образом сказывается на показателях живучести.

Так, MLC (Multi-level Cell) хранит 2 бита информации в ячейке, у TLC (Three Level Cell) будет уже 3 бита, а накопители с памятью QLC (Quad-Level Cell), располагают 4-мя битами в одной ячейке памяти.

Иногда можно встретить обозначение 3-bit MLC или MLC-3, но стоит понимать, что на самом деле, так обозначили память TLC.

Стоит понимать, что каждый дополнительный бит существенно снижает количество циклов чтения-записи ячейки памяти и скорость работы SSD. Так, для MLC этот показатель уже около 10 000 циклов, у TLC – 3 000, а QLC всего порядка 1 000. Есть ещё eMLC (Enterprise Multi Level Cell), где число циклов перезаписи увеличено до 30 000.

Что такое V-NAND, 3D NAND или QLC 3D NAND

Если с типами памяти всё стало более-менее понятнее, то что за обозначения V-NAND, 3D-NAND или QLC 3D NAND, которые встречаются в описаниях SSD накопителей, особенно известных брендов.

Для удешевления производства и улучшения характеристик производительности и срока службы, ячейки флеш-памяти на чипе стали размещать в несколько слоёв. Эти технологии получили названия V-NAND, 3D NAND или QLC 3D NAND. Остальную память, в чипах которой ячейки размещаются в одном слое называют «плоской» (planar).

Интересно, что Samsung предпочитает указывать именно технологию производства V-NAND, а не тип используемой памяти, создав для этих целей собственные линейки EVO и PRO, где применяется TLC и MLC соотвественно. Кроме того, Samsung заявляет что их чипы памяти, произведённые по технологии V-NAND TLC по всем характеристикам уделывают обычные planar MLC.

Что выбрать для домашнего использования MLC, TLC или QLC?

Чёткого ответа, какой тип памяти предпочесть у меня нет, сам скорее ориентируюсь на конкретные модели производителей. При бюджете до 10 000 рублей предпочитаю ставить SSD диски от Samsung серии EVO (не реклама).

Если же руководствоваться исключительно характеристиками, то MLC 3D NAND кажется предпочтительнее – тут и более высокая скорость работы, и больший срок службы… но лишь до того момента, пока не берём в расчёт цену. А тут выбор уже не становится таким очевидным.

Есть сценарии работы, при которых нет нужды часто перезаписывать данные, а вот объём накопителя весьма критичен. В таком случае, можно присмотреться к SSD с памятью QLC (quad-level cell), где стоимость гигабайта наименьшая, а прирост скорости по сравнению с обычными HDD весьма ощутимый.

Кстати, на скорость работы твердотельных накопителей влияет не только тип памяти, но и интерфейс по которому он работает: SATA, PCI-E или NVMe.

Так, в случае SSD с интерфейсом SATA заметить разницу в скорости между типами памяти TLC и MLC не получится, зато TLC накопитель с NVMe может оказаться быстрее сходного по цене с памятью MLC, работающего на PCI-E. Ну и не стоит сбрасывать со счетов гарантию производителя.

Если считаете статью полезной,
не ленитесь ставить лайки и делиться с друзьями.

Samsung Galaxy Fold: кому нужен гнущийся смартфон?Повербанк Xiaomi с «волшебным» песком из КитаяКниги по основам электроники для начинающихOpenVPN сервер на маршрутизаторах D-Link серии DSRПлюсы и минусы AirPort Time CapsuleSamsung и Apple объединяются? iTunes и AirPlay 2 в новых телевизорах Samsung.

Источник: https://mdex-nn.ru/page/technologii-nand-flash.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.